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Abstract 

The abundance of diet data generated by self-monitoring technologies presents an opportunity for data-powered 
personalization of diet recommendations. This aligns with diabetes education best practices, specifically that 
clinicians should work with patients to develop individualized self-management plans. Despite the potential for 
leveraging self-monitoring data to improve dietary management of type 2 diabetes, there are few tools that turn it 
into decision support. The goal of the research presented here was to develop a suggestion system to generate data-
driven and clinically appropriate personalized dietary recommendations for patients with type 2 diabetes. To build 
our suggestion system, we iteratively coded data from interviews with 10 dietitians to develop a decision tree that 
represents the process dietitians use to suggest dietary changes to promote better glucose control. Next, we 
automated this process for patient-generated data by developing an ontology and an R program to make this 
process computable. Finally, we evaluated the program against a clinician-generated gold standard. Two dietitians 
found the decision tree to be an accurate knowledge representation. Further, they reported it was potentially useful 
in clinical practice. The program output was 69% and 83% consistent with the gold standard for each of two patient 
datasets. The suggestion system presented here represents a step towards a decision support tool for dietary 
management of T2D that could be applied in the clinical and personal informatics domains. As clinicians see the 
utility of patient generated data in healthcare, many will want to it to connect with their patients and make care 
more personalized. Furthermore, our suggestion system also provides a basis for providing individuals engaging in 
self-monitoring a more actionable synthesis of their data.  

Introduction 

The ubiquity of self-monitoring technologies has improved the quantity and quality of patient-generated diet data. 
This abundance of diet data presents the opportunity for data-powered personalization of diet recommendations and 
counseling, aligning with diabetes self-management education best practices, specifically that clinicians should work 
with patients to develop individualized dietary self-management plans1. 

Though they are not free of bias, data from dietary self-monitoring technologies can provide a more comprehensive 
picture of a patient’s eating patterns than paper-based approaches traditionally used in dietetics, such as 3-day food 
records or 24-hour dietary recall interviews2. However, the volume of data produced by these technologies makes 
their application in clinical practice time consuming. Further, they may promote apophenia (i.e., the human tendency 
to see patterns even where there are none)3. Such comprehensive self-monitoring data can yield important insight 
about the relationship between diet and blood glucose; however, the self-discovery process is complex and not 
always reliable4. Despite the potential for leveraging dietary self-monitoring data to improve dietary management of 
type 2 diabetes (T2D), there are few tools to reduce its complexity and turn it into decision support. In this work we 
investigate the possibility of using knowledge engineering techniques to develop a decision support system powered 
by patient self-monitoring data that mimics the decision-making of registered dietitian nutritionists (RDNs) to 
automatically generate personalized nutrition recommendations. 

In the hospital setting, a transition to data-driven clinical decision support was made possible by the proliferation of 
data streams in intensive care units during the mid-20th century. Systems like Health Evaluation through Logical 
Processing (HELP) used data to develop a comprehensive representation of a patient and lead to automated clinical 
decision support that included recommendations for orders and procedures5. Suggestion systems are a subset of 
clinical decision support systems that combine data with a knowledge base to suggest an appropriate intervention5. 
Suggestion systems mimic human decision-making and have been demonstrated to be effective in representing 
expert decision-making5.  

We adopted an analogous approach to support the design and evaluation of a novel health information technology 
system that produces data-powered, personalized dietary suggestions for patients with T2D. Although a knowledge 
representation that generates diet recommendations for patients with diabetes has been developed6, it does not 



  

leverage patient generated diet data. An important next step in the development of a useful suggestion system is 
representing how RDNs transform information about an individual patient’s diet into recommendations for 
improving his/her personal glycemic response. Importantly, this clinician knowledge is not found in textbooks or 
clinical guidelines. Therefore, the goal of the research presented here was to develop a suggestion system to generate 
data-driven personalized dietary recommendations for patients with T2D in a way that mimics expert decision-
making. To build our suggestion system, we first developed a knowledge representation of the process RDNs use to 
suggest dietary changes that may promote better glucose control. Next, we automated this process for patient-
generated data. Finally, we evaluated the program against a clinician-generated gold standard.  

Methods 

We conducted a qualitative study to develop a suggestion system, then automated and evaluated it. Participants 
(n=2) with T2D collected the meal data used in this study with a mobile application designed to support dietary self-
monitoring during Fall 2014. Participants took a photo and recorded a text description of each of their meals during 
a 30-day period. These participants also recorded their pre-meal and two-hour-post-prandial blood glucose. An 
expert RDN used the USDA nutrition database to estimate calories and macronutrient (i.e., protein, fat, 
carbohydrate, and fiber) composition of each meal based on the meal photos and text descriptions. Datasets included 
meals (P1 n=72; P2 n=105) linked to BG readings (P1 n=304, P2 n=211) as well as information about meal type 
(i.e., breakfast, lunch, dinner, snack), blood glucose change, and calorie content and macronutrient content, from 
which the proportion of calories from each macronutrient were derived (e.g., proportion of calories from 
carbohydrate). Additional study details are reported elsewhere4.  

Interview data were collected as part of a qualitative study with RDNs (n=10, 100% female, aged 25-40, 100% had a 
graduate degree in nutrition, 100% had counseled patients with T2D) to assess the usability of an interface for 
synthesizing and viewing patient-generated meal data. Additional study details are reported elsewhere7. During these 
interviews, participants were also asked to “think aloud” through the process of using meal photos and 
macronutrient composition of the meals in the photos to counsel a patient. These interviews were recorded and 
transcribed. The current study includes a secondary analysis of these data. The Columbia University Medical Center 
IRB approved all methods for this study.  

The first author coded sections of the interviews describing counseling procedures using process coding8. In process 
coding, text segments are annotated with a gerund (i.e., an action word usually ending in –ing). Interviews were 
coded until saturation was reached (i.e., new codes were no longer arising from the data)9. Through an iterative 
decision tree modeling analysis10, these first level codes were combined into higher-level codes (i.e., main themes) 
that were ordered sequentially to represent the RDNs’ counseling process. The 2010 Dietary Guidelines for 
Americans (DGA)11 were consulted to make relevant decision points more specific. Two RDNs who participated in 
the interviews examined the visual representation of the decision tree model during a second interview with the first 
author. They were asked to assess face validity of the decision tree as well as the usefulness of the decision tree as a 
knowledge representation.  

Next, we automated the decision tree model by translating it into a machine-readable form to facilitate the computer 
reasoning necessary to transform meal data into goals. First, we created a task-specific ontology, consisting of 
classes and attributes derived from the main themes. Then, the decision tree model was used as a basis for a series of 
functions that transform meal data into personalized patient goals. Functions were written in R Version 3.0.7 (The R 
Foundation for Statistical Computing, Vienna, Austria). 

We evaluated the output of the suggestion system against an expert-generated gold standard. Two certified diabetes 
educators (CDEs), one an RDN and one an RN, worked with the supervising author in an iterative process to 
develop an set of recommendations for two patients using a set of meal photos and associated macronutrient data for 
30 days worth of meals. Importantly, these highly trained and very experienced experts had unlimited time to 
examine the raw data to develop a set of recommendations for each patient. For each patient, the CDEs met four 
times for 60-90 minutes and developed a consensus gold standard. The first author qualitatively compared program 
output to the gold standard to assess initial validity.  

Results 

Initial coding resulted in 36 process codes and seven themes representing the clinical decision making process. The 
themes were: 1) Using BG impact to reduce the size of the dataset, mostly by focusing on impactful meals; 2) 
Identifying target BG ranges/excursions, which included identifying BG changes that exceeded 50 mg/dl; 3) 
Assessing portion size and macronutrient content, which included “eyeballing” carbohydrate content, and assessing 



  

calorie content, portion size, and proportions of macronutrients in a meal; 4) Assessing patterns/trends and 
deviations, which included assessing variation in meals and identifying “red flags”; 5) Using knowledge about 
metabolism, time of day, and guidelines to identify patterns and compare macronutrient intake to recommendations; 
6) Developing hypotheses, which included working backwards and getting additional information from a patient to 
identify problems and inform goals; and 7) Simplifying the counseling message. 

The decision tree modeling analysis resulted in a knowledge representation that consisted of a four-step process 
(Figure 1). The first step in the process was assessing BG impact and reducing the dataset by splitting it into high 
and low blood glucose impact meals. Based on information provided during the gold-standard generation, the 
decision rule was set at a BG change of ≥50mg/dl at 2 hours after the meal. The second step was identifying ranges 
and excursions using recommended macronutrient ranges for meals in both the low impact and high impact datasets. 
As there were no diabetes-specific recommendations for macronutrient ranges, we used the DGA to establish the 
proportion of calories from each macronutrient (i.e., carbohydrate=45-65%, fat=20-35%, protein=10-35%). Fiber 
recommendations suggested 25-30 grams/day, rather than a proportional range. Considering the typical American’s 
under consumption of fiber, we set the threshold for fiber at 8g/meal. The third step in the process was identifying 
patterns by comparing deviations from the guidelines between the low and high impact meals. The decision rules for 
this comparison were as follows: If the low impact meals have more of the macronutrient, eat more of that 
macronutrient; if the high impact meals have more of the macronutrient, eat less of the macronutrient; if there is no 
difference, present no goal. The fourth step was developing a goal using knowledge about time of day. This step 
translates deviations between low and high impact meals into human-readable goals, and makes them meal-specific 
to account for differences in blood glucose change throughout the day and to make goals more actionable.  

 
Figure 1. Decision Tree Model for Diabetes Goal Setting Based on Qualitative Analysis. 

We validated the decision tree with two RDNs who independently determined that it represented an appropriate 
process of determining dietary goals for patients with T2D. They suggested that some macronutrients were less 
likely to impact blood glucose change and that the timing of snacks should be considered. Both RDNs were 
enthusiastic about the prospect of an automated system to identify meal-BG patterns. 

To automate the system, we developed an ontology and a set of functions to reason over the knowledge 
representation. The ontology consisted of five classes: BG change, macronutrients, meal type, deviation from 
guideline, and goal. Macronutrient and goal classes had subclasses to represent each of the macronutrients of 
interest. Attributes varied by class and reflected decision rules. BG change attributes were high or low; each 
macronutrient could have the attribute high, low, or in range based on DGA, except fiber, which was high or low 
because there was no range; meal type attributes were breakfast, lunch, dinner, or snack; deviation was -1, 0, or 1 
based on a simple subtraction low impact - high impact; goal attributes were eat more, eat less, or null. The input for 
the R functions was a data frame that consists of one row per meal and columns for meal type (i.e., breakfast, lunch, 
dinner, snack), BG change, proportion of calories from carb, proportion of calories from protein, proportion of 
calories from fat, and grams of fiber; the output of data-to-goals is four lists of goals, one list per meal. In order to 
make the computation more efficient and to approximate the “eyeballing” the RDNs used, high and low impact 

if	yes:	

+	
low	BG		
impact	

meal	dataset	

high	BG		
impact	

out	of	range		
nutrient(s)	

out	of	range		
nutrient(s)	

>/=/<	DGA	
range	

>/=/<	DGA	
range	

compare,	calculate	
nutrient	and	mealBme	

deviaBon	

carb/NULL	

fiber/NULL	

fat/NULL	

pro/NULL	

+	

+	

eat	more/less	

if	yes:	

eat	more/less	

if	yes:	

eat	more/less	

if	yes:	

eat	more/less	

mealBme/NULL	

mealBme/NULL	

+	

+	

mealBme/NULL	+	

mealBme/NULL	+	

>50	mg/dl	

<50	mg/dl	



  

meals were grouped by meal type and an average score comparing the typical meal to the dietary guideline was 
calculated and rounded to the nearest whole number score. In order to assess deviations the following heuristic was 
used: High = 1/In range = 0/Low = -1; Deviation = low – high; If negative à “eat less”/If positive à “eat more”. 

The program output and the gold standard were about 69% consistent for P1 (Table 1) and 83% consistent for P2 
(Table 2). It is important to note that because the CDEs were given access to the raw meal photo data during the 
development of the gold standard, some gold standard components were not possible to match to the goal output 
from the program. For example, the CDEs observed the “texture of carbohydrates has an impact on BG.” 

Discussion 

This paper outlines and validates a novel method for generating personalized nutritional recommendations for 
individuals with T2D using their self-monitoring data and knowledge engineering methods. This work represents an 
extension of previous knowledge representations to support dietary self-management of T2D6 by incorporating 
information from RDNs and CDEs about the counseling process as well as clinical guidelines. We successfully 
avoided many of the common problems that arise during knowledge engineering12,13. In particular, we targeted a 
very specific, well-defined problem that clinicians are eager to receive help with. Additionally, our team included 
several domain experts, as well as a knowledge engineer with domain expertise in nutrition. Although some have 
argued that building computer systems to mimic expert decision making is futile due to human ability to synthesize 
multiple data sources and make intellectual decisions without explaining a stepwise process for arriving at those 
decisions14, this task in particular differs for several important reasons. First, when counseling based on large sets of 
objective data about meals human experts may be prone to apophenia3, noting patterns where there are not, in order 
to make a large set of data more manageable. Second, clinicians cannot be aware of all published evidence. For 
example, RDNs suggested some macronutrients (i.e., fat) did not physiologically influence blood glucose; however, 
this clinical assumption is not borne out in the literature. This suggests the potential benefit of a system that can 
integrate new knowledge as it arises through consensus in the literature and future application of symbolic methods 
in this area. As noted in the literature on expert systems, using a system like the one presented here may facilitate the 
translation of research to practice13, thereby improving the quality of expert nutrition advice, which often relies 
heavily on personal experience, bias, and habit. 

Table 1. Qualitative Evaluation of Recommender Performance for P1 

 
 

 

 
Recommender  Gold Standard Evaluation 
Breakfast eat more 
carb 

•When breakfasts had higher proportion of carbs (more than 40%) and lower in protein (less than 40%), there is a higher 
differential (over 100) in 1 hour 
•High carb (over 40%) in breakfast meals, combined with low protein (20%) lead to high excursions 
•When breakfasts include more than 1 serving of fruit there is a higher differential (over 100) in 1 hour 
•The majority of high impact meals are breakfasts  
•	High fiber and mod carb leads to low impact 

Inconsistent 

Breakfast ok on fiber •Overall, this person includes relatively high amount of fiber (over 5g per meal on average)  
•High fiber (over 15g) and moderate carb (20-40%) leads to low impact (lower than 50) 

Consistent 

Breakfast ok on 
protein 

•High carb (over 40%) in breakfast meals, combined with low protein (20%) lead to high excursions 
•In meals with fat around 35-40% and low protein (under 10g), mild impact (only in some clusters) 

Inconsistent 

Breakfast ok on fat •No excessive amounts of fat (greater than 35% of calories come from fat) 
•In meals with fat around 35-40% and low protein (under 10g), mild impact (only in some clusters) 

Consistent 

Lunch ok on carb •Long break between breakfast and lunch and over-restriction of carbs in lunch lead to high excursion  
•Overall, this person is less restrictive in carbs 
•High fiber (over 15g) and moderate carb (20-40%) leads to low impact (lower than 50) 

Both 

Lunch ok on fiber •Overall, this person includes relatively high amount of fiber (over 5g per meal on average)  
•High fiber (over 15g) and moderate carb (20-40%) leads to low impact (lower than 50) 

Consistent 

Lunch ok on protein •High proportions of calories (over 50%) in lunch and dinner come from protein 
•Lunch: high inclusion of protein (over 55%) with generally mild glycemic impact 

Consistent 
 

Lunch ok on fat •No excessive amounts of fat (greater than 35% of calories come from fat) 
•In meals with fat around 35-40% and low protein (under 10g), mild impact (only in some clusters) 

Consistent 

Dinner ok on carb •Overall, this person is less restrictive in carbs  Consistent 
Dinner eat less fiber •Overall, this person includes relatively high amount of fiber (over 5g per meal on average) 

•High fiber (over 15g) and moderate carb (20-40%) leads to low impact (lower than 50) 
Both 

Dinner ok on protein •High proportions of calories (over 50%) in lunch and dinner come from protein 
•High inclusion of protein (over 55%) with generally mild glycemic impact (at lunch in particular) 

Consistent 

Dinner eat less fat •No excessive amounts of fat (greater than 35% of calories come from fat) 
•In meals with fat around 35-40% and low protein (under 10g), mild impact (only in some clusters) 

Inconsistent  

Snack eat more carb •High fiber (over 15g) and moderate carb (20-40%) leads to low impact (lower than 50) 
•Overall, this person is less restrictive in carbs 
•High carb (over 40%) in breakfast meals, combined with low protein (20%) lead to high excursions 

Inconsistent 

Snack ok on fiber •Overall, this person includes relatively high amount of fiber (over 5g per meal on average) 
•High fiber (over 15g) and moderate carb (20-40%) leads to low impact (lower than 50) 

Consistent  

Snack ok on protein No mention of protein at snack Consistent 
Snack ok on fat No excessive amounts of fat (greater than 35% of calories come from fat) Consistent 
 
 
 
 
 
 
 
 
 
 
 



  

Table 2. Qualitative Evaluation of Recommender Performance for P2 

 
RDNs agreed in their interviews that if some of the detective work of analyzing patient generated data were taken 
out of a clinical encounter, more time could be spent on guided practice and problem solving, potentially improving 
patient experience and success in achieving dietary self-management goals. While the experts who developed the 
gold standard for this study had unlimited time and multiple meetings to discuss and develop a consensus set of 
recommendations, a typical clinical encounter is 15-45 minutes. This suggests that this sort of decision support 
could feasibly become part of a clinical workflow, an essential component of CDS adoption15. Furthermore as FHIR 
resources become more common, they will support the integration of patient-generated data with clinical practice17. 

The expert system presented in this study was validated qualitatively on proximal outcomes. Though it is important 
that nutrition experts noted its potential utility and that the knowledge representation framework itself reasonably 
represented the process of generating a goal from patient data, future validations might assess the accuracy of the 
output by providing the dietitians and recommender the same data and a closed set of goals. Future studies should 
also evaluate the effect of the system on patient behavior change. It is possible that the suggestion system is better at 
identifying true patterns than experts, which would require a comparative effectiveness evaluation to assess. The 
current system does not treat morning and evening snacks separately; this will be implemented in future versions as 
both the literature17 and the RDNs suggested BG change varies throughout the day. Finally, this system is limited by 
its reliance upon a fairly extensive self-monitoring data, a known challenge for many patients18.  

Future directions for this research include linking the recommendation system to more specific action plans because 
people tend to be more successful when they lay out how they will achieve their goal. In previous research, our team 
developed a knowledge base for diabetes problem solving, consisting of culturally appropriate action plans19; these 
can be connected to the goals presented here, thus providing patients with a context-relevant set of action plans from 
which to choose in order to support their goal attainment. The system presented here could also be linked to a food 
ontology in order to suggest personalized specific food suggestions that meet the macronutrient goals. Additional 
directions include the implementation of computational modeling to improve the quality of the pattern recognition 
among the meals presented in a patient’s data. Finally, future iterations of this system could incorporate other 
contextual data generated along with meal data in order to better tailor action plans for “just in time” interventions20 
to help patients overcome barriers to achieving their dietary goals. 

Recommender  Gold Standard Evaluation 
Breakfast ok on carb •Generally, this person is quite restrictive in carbs (under 60g for most meals) 

•Moderate amount of carb (around 30g-40g) combined with higher fiber (around 9-10g or higher) lead to more moderate impact  
•Breakfast – generally minimal excursion (carbs between 13 and 15, which is lower than for other types of meals because of the 
proportionately higher fiber, around 9g or higher, as compared to other meals) 
•High carbohydrate meals (over 40g) that have more even inclusion of other macronutrients have more moderate impact (around 50 
or below; particularly for dinner) – but low certainty because only few cases 

Consistent  

Breakfast ok on fiber •Breakfast – generally minimal excursion (carbs between 13 and 15, which is lower than for other types of meals because of the 
proportionately higher fiber, around 9g or higher, as compared to other meals) 
•Higher fiber does not seem to have a positive impact on BG (meals with low fiber, lower than 5g, have low glycemic impact) 
•High fiber (over 10g) and high fat (45-60%) together lead to low impact  
•Refined carbs (corn chowder) contribute to high impact 

Both 

Breakfast ok on fat •High fiber (over 10g) and high fat (45-60%) together lead to low impact  Inconsistent 
Breakfast ok on 
protein 

•High carbohydrate meals (over 40g) that have more even inclusion of other macronutrients have more moderate impact (around 50 
or below; particularly for dinner) – but low certainty because only few cases 

Consistent 

Lunch ok on carb •Generally, this person is quite restrictive in carbs (under 60g for most meals) 
•Moderate amount of carb (around 30g-40g) combined with higher fiber (around 9-10g or higher) lead to more moderate impact  

Consistent  

Lunch ok on fiber •Moderate amount of carb (around 30g-40g) combined with higher fiber (around 9-10g or higher) lead to more moderate impact  
•Higher fiber does not seem to have a positive impact on BG (meals with low fiber, lower than 5g, have low glycemic impact) 

Consistent  

Lunch ok on fat •Lunch – when greater than 45% of calories came from fat, the meals often had high excursion 
•High fiber (over 10g) and high fat (45-60%) together lead to low impact  

Both 

Lunch ok on protein •High carbohydrate meals (over 40g) that have more even inclusion of other macronutrients have more moderate impact (around 50 
or below; particularly for dinner) – but low certainty because only few cases 

Consistent 

Dinner ok on carb •Generally, this person is quite restrictive in carbs (under 60g for most meals) 
•Moderate amount of carb (around 30g-40g) combined with higher fiber (around 9-10g or higher) lead to more moderate impact  
•High carb meals (over 40g) that have more even inclusion of other macronutrients have more moderate impact (around 50 or 
below; particularly for dinner), but low certainty - few cases 

Consistent  

Dinner ok on fiber •Moderate amount of carb (around 30g-40g) combined with higher fiber (around 9-10g or higher) lead to more moderate impact  
•High carb meals (over 40g) that have more even inclusion of other macronutrients have more moderate impact (around 50 or 
below; particularly for dinner), but low certainty - few cases 
•Dinner – the lunch trend of high proportions does not hold.  
•At dinner, similarly high proportions of fat and protein did not lead to high excursions, potentially because of higher fiber (10g and 
above), but low certainty - variability  
•Higher fiber does not seem to have a positive impact on BG (meals with low fiber, lower than 5g, have low glycemic impact) 

Consistent  

Dinner ok on fat •High carb meals (over 40g) that have more even inclusion of other macronutrients have more moderate impact (around 50 or 
below; particularly for dinner), but low certainty - few cases 
•Dinner – the lunch trend of high proportions does not hold.  
•At dinner, similarly high proportions of fat and protein did not lead to high excursions, potentially because of higher fiber (10g and 
above), but low certainty - variability  
•High fiber (over 10g) and high fat (45-60%) together lead to low impact  

Consistent  

Dinner ok on protein •High carb meals (over 40g) that have more even inclusion of other macronutrients have more moderate impact (around 50 or 
below; particularly for dinner), but low certainty - few cases 
•Dinner – the lunch trend of high proportions does not hold.  
•At dinner, similarly high proportions of fat and protein did not lead to high excursions, potentially because of higher fiber (10g and 
above), but low certainty - variability  

Consistent 

 



  

Conclusion 

The suggestion system presented here represents a step towards a decision support tool for dietary management of 
T2D that could be applied in the clinical and personal informatics domains. As patient generated data becomes 
increasingly widespread and clinicians see its utility, many will want to employ it to connect with their patients and 
make care more personalized. The suggestion system presented here also provides a basis for providing individuals 
engaged in self-monitoring a more actionable synthesis of their data.  
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